Capacitor Discharge Power Supplies

For Twin Coil Switch Machines

  This page presents various capacitor discharge power supply circuits for use with twin coil switch machine motors. Also shown are some optional wiring methods that can be used to enhance the availability and control of these supplies.

  The schematics on this page have sections that have heavier lines. These lines represent the portions of the circuit that are subjected to large current surges when the switch machines are operated. Careful attention to good wiring and soldering techniques should be used for these sections to ensure good results.


Basic Twin Coil Switch Machine Power Supplies

  The following diagram shows two basic twin coil switch machine power supplies.

Basic Capacitor Discharge Units

  Circuit A is the simplest type but suffers from a relatively slow recovery rate.

  Circuit B is a very popular power supply as it has a very good recovery time. This circuit has a high current surge when the capacitor is charging.



Simple But Effective Switch Machine Power Supply

  The first circuit of this page is for a classic Resistor / Capacitor unit but with a few modifications made.

Simple Resistor / Capacitor Unit schematic

  The standard bugaboo with this type of circuit is the relatively long charging time of the capacitor. But if you are willing to wait the 1 second that a 2200uF capacitor takes to charge to 90 percent of its maximum voltage when a 220 ohm resistor is used this can be a simple and cost effective power supply. Using a lower resistance charging will shorten the charging time proportionally.

  Shown in the top power supply circuit is an indicator circuit that shows when the capacitor is near its full charge. This is an optional feature and can be left out as shown on the second unit.

  To increase the availability of switch machine power more than one discharge unit can be connected to a central transformer and rectifier / filter capacitor. This would allow smaller discharge units to be placed around the layout and used to operate machines that are nearby.

  The diode in front of the 220 ohm resistor will prevent units from draining the voltage from each other when turnouts are thrown. Although this is unlikely to happen with an adequately sized supply transformer.

  If the recharging time is not too important such as for machines that are not thrown often, the value or the 220 ohm resistor could be increased and its wattage reduced. The maximum potential load on the circuit will be reduced accordingly. If not as much pulse current is needed to throw the turnouts then the value of the capacitor could also be reduced.

  With a 16 volt AC supply transformer the DC voltage across the capacitor will be about 21 volts and the maximum charging current will be 0.2 amps.

  For a circuit of this type the charging time is dependent on the values of the resistor and capacitor used. For example if a 220 ohm resistor and a 2,200 microfarad capacitor are used then the charging time constant would be as follows.

220 Ohms X 2,200uf = 0.484 Seconds (1 Time Constant)

  This is the time that the capacitor would take to reach 63 percent of the supply voltage. The time needed to reach approximately 86 percent of the supply voltage is 2 time constants.

2 X 0.484 = 0.968 Seconds (2 Time Constants)

  For practical purposes the time to reach the supply voltage is 5 time constants but switch machines should be able to throw reliably at 90% of the supply voltage.

  With a little patience, about one second's worth, the basic resistor / capacitor power supply is a very effective and economical system. However if there is the need for speed then one of the more sophisticated supplies can be used.


Calculating The Time To Charge To 90% Of The Supply Voltage

To Find The Charging Time Of The Capacitors In Seconds:

LN (90% of V supply / V supply) R x C = -T

For A 10 Volt supply, 220 ohm resistor and 2,200uF capacitor the time to charge the capacitor to 90% of the supply voltage can be found:

2.71828 ( 1 - 9 / 10 ) X 220 X ( 2,200-6 ) = -1.1 Seconds

For actual circuit calculations use 90% of the voltage of the power supply being used.

Or, Use This Calculator

Resistance, Capacitance, Voltage, And Charging Time Calculator (@ www.csgnetwork.com)


  The 5 watt resistors in the following circuits are for safety.

  If there was a short circuit in the discharge portion of the CDU circuits, the 5 watt resistors would limit the current value to a safe value.


Current Blocking Switch Machine Power Supply

  The Current Blocking type of switch machine supply is a widely used device and is well documented. It is reliable and practical design.

  Simply stated; This type of supply blocks the charging current to the storage capacitor anytime current is flowing from the output of the circuit, such as when a switch machine is activated.

  The only modification that this circuit might use is: (1) A resistor to limit the maximum charging current to a reasonable level. (2) a "Capacitor Charged" indicator. These additions are shown on the next diagram.

  The first schematic on the following diagram shows a current blocking switch machine power supply with a 10 ohm resistor in the collector circuit of the blocking transistor. This resistor should be a wire wound type power resistor as it will have to handle peak currents of approximately 2.4 amps.

  The second schematic shows a "Capacitor Charged" indicator added to the circuit. The LED will begin to glow when the voltage across the capacitor is approximately 16 volts and be fully lit at about 20 volts.

Upgraded Current Blocking Switch Machine Power Supplies


Other Capacitor Discharge Switch Machine Circuits

  • Control Of Single Coil Switch Machines Using Toggle Switches - 2018 Circuit

  • Control Of Single Coil Switch Machines Using Push Button Switches - 2018 Circuit

  • Toggle Switch Control of Twin Coil Switch Machines - 2016 Circuit

  • Toggle Switch Control Of Single Coil Switch Machines - 2016 Circuit

  • Multiple Location Control For Twin Coil Switch Machines - 2016 Circuit

  • Multiple Location Control For Single Coil Switch Machines - 2016 Circuit



    A Power Supply For Use With Transistors

      This circuit cannot be used with pushbuttons in the coil circuit as the charging current would not be cutoff when the button is pushed.

    Transistor Compatible - Current Blocking Switch Machine Power Supply Schematic

      Incidentally, this circuit would be a good choice if optoisolators were used in place of the pushbuttons, as might be the case with computer controlled switching. This technique is shown in the "B" COIL section of the above schematic.



    Transistor Control Of Switch Machines

      The next schematic shows how a Darlington type transistor could be used to replace a push button in the coil circuit.

    Transistor Control for Switch Machines

      Using transistors to control the machine would allow operation of the turnout over long distances or via a computer interface. By using a small current to control a large current just as with a relay.

      In this type of operation the control current should be from a filtered or regulated DC source.

      Also using transistors to replace push buttons would allow a diode matrix to be built using signal diodes as these would be subjected to only the smaller control currents required by the transistors.



    Twin Coil Switch Machine With Latching Relay

      The next schematics show how 'latching' type relays could be used with twin coil switch machines.

    Single Coil Latching Relay

      The SCR circuit may be the better choice for CD type power supplies as the SCR's don't need any gate current once they are switched ON.

    Dual Coil Latching Relay


    Capacitor Values

      The value of the capacitors in the circuits is only a suggestion. Smaller values may work equally well for a particular switch motor. Turnouts for crossovers may need larger capacitors.


    Return to the Main Page


    Please Read Before Using These Circuit Ideas

      The explanations for the circuits on these pages cannot hope to cover every situation on every layout. For this reason be prepared to do some experimenting to get the results you want. This is especially true of circuits such as the "Across Track Infrared Detection" circuits and any other circuit that relies on other than direct electronic inputs, such as switches.

      If you use any of these circuit ideas, ask your parts supplier for a copy of the manufacturers data sheets for any components that you have not used before. These sheets contain a wealth of data and circuit design information that no electronic or print article could approach and will save time and perhaps damage to the components themselves. These data sheets can often be found on the web site of the device manufacturers.

      Although the circuits are functional the pages are not meant to be full descriptions of each circuit but rather as guides for adapting them for use by others. If you have any questions or comments please send them to the email address on the Circuit Index page.

    Return to the Main Page

    24 February, 2018